
I302

OpenVMS Volume Shadowing
Performance
Keith Parris, HP

Shadowing Performance

• Shadowing is primarily an availability tool, but:

− Shadowing can often improve performance (e.g. reads),
however:

− Shadowing can often decrease performance (e.g. writes,
and during merges and copies)

Shadow Copy/Merge Performance:
Why Does It Matter?

• Excessive shadow-copy time increases Mean
Time To Repair (MTTR) after a disk failure, or a
site outage in a disaster-tolerant cluster

• Shadow Full Merges can have a significant
adverse effect on application performance

• Shadow Full Copies or Full Merges can generate
a high data rate (e.g. on inter-site links for
Disaster Tolerant clusters)

− Acceptable shadow full-copy times and link costs are
often the major factors in selecting inter-site link(s) for
multi-site disaster-tolerant clusters

Shadowset State Hierarchy

• Mini-Merge state

• Copy state

−Mini-Copy state Transient states

−Full Copy state

• Full Merge state

• Steady state

Copy and Merge

• How a Copy or Merge gets started:

− A $MOUNT command triggers a Copy

This implies a Copy is a Scheduled operation

− Departure of a system from the cluster while it has a
shadowset mounted triggers a Merge

This implies a Merge is an Unscheduled operation

I/O Algorithms Used by Shadowing

• Variations:

− Reads vs. Writes

− Steady-State vs. Copy vs. Merge
• And for Copies and Merges,

− Full- or Mini- operation

− Copy or Merge Thread I/Os

− Application I/Os: Ahead of or Behind the Copy/Merge
“Fence”

Application Read during Steady-State

• Read from any
single member:

• Select a single
source member to
read from, based
on lowest sum of
queue length to
each disk from the
local node + the
Read_Cost value
for the disk

• Return data to
application

SHDRIVER

MemberMemberMember

Application

Application Write during Steady-State

• Write to all
members in
parallel

• Once last write has
completed, return
success status to
application

SHDRIVER

MemberMemberMember

Application

Full-Copy and Full-Merge
Thread Algorithms

• Action or Event triggers Copy or Merge:

− $MOUNT command triggers Copy (scheduled operation)

− System departure from cluster while it has shadowset
mounted triggers Merge (unscheduled operation)

• SHADOW_SERVER on one node picks up Thread
from work queue and does I/Os for the Copy or
Merge Thread

− SHADOW_MAX_COPY parameter controls maximum
number of Threads on a node

• SHAD$COPY_BUFFER_SIZE logical name
controls number of blocks handled at a time

• No double-buffering or other speed-up tricks used

Full-Copy and Full-Merge
Thread Algorithms

• Start at first Logical
Block on disk (LBN zero)

• Process 127 blocks at a
time from beginning to
end

• Symbolic “Fence”
separates processed
area from un-processed
area

Fence

Beginning

End

Processed area

Un-processed area

Thread

Progress

Full-Copy Thread Algorithm

1. Read from (a) source
member

2. Compare with target
member(s)

3. If different, write data to
target and start over at
Step 1.

Source Target

Shadow_Server

Target

Full-Copy Thread Algorithm

• Why the odd algorithm?

• To ensure correct results in cases like:

− With application writes occurring in parallel with the
copy thread

• application writes during a Full Copy go to the set of source
disks first, then to the set of target disk(s)

− On system disks with an OpenVMS node booting or
dumping while shadow copy is going on

• To avoid the overhead of having to use the
Distributed Lock Manager for every I/O

Speeding Shadow Copies

• Implications:

− Shadow copy completes fastest if data is identical
beforehand

• Fortunately, this is the most-common case – re-adding a
shadow member into shadowset again after it was a member
before

Full-Copy Thread Algorithm
(Data Identical)

1. Read from source

2. Compare with target

Source Target

Shadow_Server

Full-Copy Thread Algorithm
(Data Different)

1. Read from source

2. Compare with
target (difference
found)

3. Write to target

4. Read from source

5. Compare with
target (difference
seldom found). If
different, write to
target and start
over at Step 4.

Source Target

Shadow_Server

Full-Copy Thread Algorithm
(Data Different)

When will data be different?

• Replacing a failed disk with a new replacement
disk

• Moving from an older disk model to a new,
potentially larger disk model

• Re-using a disk previously a member of another
shadowset

• etc.

Speeding Shadow Copies

• If data is very different, empirical tests have shown that it
is faster to:

1. Do BACKUP/PHYSICAL from source shadowset to /FOREIGN-
mounted target disk

2. Then do shadow copy afterward

than to simply initiate a shadow copy with differing data.

It is faster to do these two operations in sequence than
to simply add the shadowset member in with different
data.

• Caution: If you’re not running 7.3-2 or later (or don’t have a recent
Mount ECO kit on earlier versions) be sure to clobber the SCB on
the target disk with a $MOUNT/OVERRIDE=SHADOW (or
$INITIALIZE) command before adding new member to shadowset

− Or else Mount gets fooled by identical SCBs and new disk is
added as a Merge Member instead of as a Full-Copy Target as
it should. Problem is fixed in 7.3-2 and in Mount ECO kits for
earlier versions.

Why a Merge is Needed

• If a system has a shadowset mounted, and may be
writing data to the shadowset…

• If that system crashes, then:

− The state of any “in-flight” Write I/Os is indeterminate
• All, some, or none of the members may have been written to

− An application Read I/O could potentially return different
data for the same block on different shadowset members

• Since Shadowing guarantees that the data on all
shadowset members must appear to be identical,
this uncertainty must be removed

− This is done by a Merge operation, coupled with special
treatment of Reads until the Merge is complete

What Happens in Full Merge State
• Full Merge operation will:

− Read and compare data on all members

− Fix any differences found

− Moves across disk from start to end, 127 blocks at a time

− Progress tracked by a “Fence” separating the merged
(behind the fence) area from the unmerged (ahead of the
fence) area

• Special treatment of Reads:
− Every application read I/O must be merged:

• Read data from each member (for just the area of the read)

• Detect any differences

• Overwrite any different data with data from Master member

• Return the now-consistent read data to the application

− This must be done for any Reads ahead of the Merge
Fence

HBVS Merge Operations
Q: Why doesn’t it matter which member we choose to

duplicate to the others on a merge? Don’t we need to
ensure we replicate the newest data?

A: Shadowing reproduces the semantics of a regular
disk:
1) Each time you read a block, you always get the same data returned

2) Once you do a write and get successful status back, you always
expect to get the new data instead

3) If the system fails while you are doing a write, and the application
doesn’t get successful status returned, you don’t know if the new or old
data is on disk. You have to use journaling technology to handle this
case.

Shadowing provides the same behavior.

Full-Merge Thread Algorithm

1. Read from any
member

2. Compare with
other member(s)

3. If different, do a
Fix-Up: halt all I/Os
to the shadowset,
fix up differences
using data from the
Master member,
then allow I/Os to
continue

Master Member

Shadow_Server

Member

Creating Shadowsets

• Traditional method historically of creating a
shadowset was to create a 1-member shadowset,
then initiate a Full Copy operation

• But you can do:

− $INITIALIZE/SHADOW=(disk1,disk2,disk3…) label

• Warning: Unless all of disk is written (i.e. by filling
it with data, or using INITIALIZE/ERASE), the first
Full Merge will be a busy one

Speeding Shadow Copies:
Mini-Copy Operations

• If one knows ahead of time that one shadowset
member will temporarily be removed, one can set
things up to allow a Mini-Copy instead of a Full-
Copy when the disk is returned to the shadowset

• For unexpected member removal, proper setup
allows Automatic Mini-Copy on Volume
Processing (AMCVP) to convert a mini-merge
write bitmap designated as Multi-Use for use in a
subsequent Mini-Copy

Mini-Copy Thread Algorithm

• (Only for areas the write
bitmap indicates have
changed):

• Read from (a) source
member

• Write to target
member(s)

• Read from (a) source
member

• Compare with target
member(s)

• If different (quite
unlikely), write data
to target and start
over at Step 3.

Source Target

Shadow_Server

Recall the Full-Copy Thread Algorithm
(with Data Different)

1. Read from source

2. Compare with target
(difference found)

3. Write to target

4. Read from source

5. Compare with target
(difference seldom
found). If different,
write to target and
start over at Step 4.

Source Target

Shadow_Server

Mini-Copy vs. Full-Copy

• If data is different, Full-Copy algorithm requires 5 I/O
operations per 127-block segment:

1. Read source

2. Compare target

3. Write target

4. Read source

5. Compare target

• Mini-Copy requires only 4 I/O operations per segment:
1. Read source

2. Write target

3. Read source

4. Compare target

• So Mini-Copy is faster even if 100% of data has
changed

Compare operation

• On MSCP controllers (HSJ, HSD), this is an MSCP
Compare Host Data operation
− Data is passed to the controller, which compares it with the data

on disk, returning status
• Cache is explicitly bypassed for the comparison

− So Read-Ahead and Read Cache do not help with Compares

• But Read-Ahead can be very helpful with Source disk Reads,
particularly when the disks are close to identical

• On SCSI / Fibre Channel controllers (HSZ, HSG, EVA),
this is emulated in DKDRIVER
− Data is read from the disk into a second buffer and compared with

the data using the host CPU (in interrupt state, at IPL 8)
• Read-ahead cache can be very helpful, particularly when disks are

close to identical

Speeding Shadow Copies

• Read-Ahead cache in controllers and disks can assist with
source read I/Os

• By default, Shadowing reads from source members in a
round-robin fashion
− But with 3-member shadowsets, with two source members, I/Os

are divided among 2 sources. With 6 members, from 5 sources!

• $SET DEVICE /COPY_SOURCE device
− Applied to shadowset member, makes the member the preferred

source for copies & merges

− Applied to Virtual Unit, current master member is used as source
for copies & merges.

Full-Merge Thread Algorithm

1. Read from any
member

2. Compare with
other member(s)

3. If different, do a
Fix-Up: halt all I/Os
to the shadowset,
fix up differences
using data from the
Master member,
then allow I/Os to
continue

Master Member

Shadow_Server

Member

Host-Based Mini-Merge

• One or more OpenVMS systems keep a bitmap of
areas that have been written to recently

− Other nodes notify (update) these nodes as new areas
are written to

− Bitmaps are cleared periodically

• If a node crashes, only areas recently written to, as
indicated by the bitmap, must be merged

• If all the bitmaps are lost, a Full Merge is needed

Speeding Shadow Copies/Merges

• Because of the sequential, non-pipelined nature
of the shadow-copy algorithm, progressing across
the entire LBN range of the disk, to speed shadow
copies/merges:

− Rather than forming controller-based stripesets and
shadowing those, shadow individual disks in parallel,
and combine them into RAID-0 (0+1) arrays with host-
based RAID software

Speeding Shadow Copies/Merges

• Dividing a disk up into 4 partitions at the controller
level, and shadow-copying all 4 in parallel takes
only 40% of the time required to shadow-copy the
entire disk as a whole (i.e. 2½ times faster)

Application I/Os

• During Full-Copy

• During Full-Merge

Application Read during Full-Copy

• Select a single
source member to
read from, based
on lowest sum of
local queue length
+ Read_Cost

• Never direct an
application read to
a target member

• Return data to
application

Source Source

SHDRIVER

Target

Full-Copy underway

Application

Application Read
During Full-Merge

• In Processed area:

• Pick one member to read
from

Fence

Processed area

Un-processed area

• In Un-processed area:

• Merge the area covered by
the read operation, then

• Return data

Application Read during Full-Merge; not-
yet-merged area

• Read from any
member

• Compare with
other member(s)

• If different, do a
Fix-Up: halt I/Os to
the shadowset, fix
up any differences
using data from the
Master Member,
then allow
shadowset I/Os to
continue

• Return data to
application

Member Member

SHDRIVER

Member

Application

Application Read during Full-Merge;
already-merged area

• Read from any
single member

SHDRIVER

MemberMemberMember

Application

Application Write
During Full-Copy

• In Processed area:

• Write to all members in
parallel

Fence

Processed area

Un-processed area

• In Un-processed area:

• Write to all source members
in parallel, wait for these
writes to complete, then

• Write to all target disk(s) in
parallel

Application Write during Full-Copy;
already-copied area

• Write to all
members in
parallel

Full-Copy underway

SHDRIVER

TargetSourceSource

Application

Application Write during Full-Copy; not-
yet-copied area

• Write to all source
member(s); wait
until these writes
have completed,
then

• Write to all
target(s)

Source

SHDRIVER

TargetSource

Full-Copy underway

Application

Application Writes
During Full-Merge

• Regardless of area:

• Write to all members in
parallel

Fence

Processed area

Un-processed area

Application Write during Full-Merge

• Write to all
members in
parallel

Full-Merge underway

SHDRIVER

MemberMemberMaster

Application

Shadowset Member Selection for Reads:
Read Cost

• Shadowing assigns a default “read cost” for each
shadowset member, with values in this order
(lowest cost to highest cost):

1. DECram device

2. Directly-connected device in the same physical location

3. Directly-connected device in a remote location

4. DECram MSCP-served device

5. All other MSCP-served devices

− Shadowing adds the Read Cost to the Queue Length and
picks the member with the lowest value to do the read

• Round-robin distribution results for disks with equal values

Shadowset Member Selection for Reads:
Read Cost

• For even greater control, one can override the
default “read cost” to a given disk from a given
node:

$ SET DEVICE /READ_COST=nnn 1DGAnnn:
For reads, OpenVMS adds the Read Cost to the queue length and

picks the member with the lowest value to do the read

• To return all member disks of a shadowset to their
default values after such changes have been
done, one can use the command:

− $ SET DEVICE /READ_COST = 1 DSAnnn:

Shadowing Between Sites:
Local vs. Remote Reads on Fibre Channel

• With an inter-site Fibre Channel link, Shadowing
can’t tell which Fibre Channel disks are local and
which are remote, so we have to give it some help:

− To indicate which site a given disk is at, do:
$ SET DEVICE/SITE=xxx 1DGAnnn:

− To indicate which site a given OpenVMS node is at, do:
$ SET DEVICE/SITE=xxx DSAnn:

for each virtual unit, from each OpenVMS node, specifying the
appropriate SITE value for each OpenVMS node.

Shadowing Between Sites:
Local vs. Remote Reads on Fibre Channel

• Here's an example of setting /SITE values:
• $ DEFINE/SYSTEM/EXEC ZKO 1

• $ DEFINE/SYSTEM/EXEC LKG 2

• $! Please note for this example that:

• $! 1DGA4: is physically located at site ZKO.

• $! 1DGA2: is physically located at site LKG.

• $! The MOUNT command is the same at both sites:

• $ MOUNT/SYSTEM DSA42/SHAD=(1DGA4, 1DGA2) VOLUMELABEL

• $! At the ZKO site ...

• $ SET DEVICE/SITE=ZKO DSA42:

• $! At the LKG site ...

• $ SET DEVICE/SITE=LKG DSA42:

• $! At both sites, the following commands would be used

• $! To specify at which site the disks are located

• $ SET DEVICE/SITE=ZKO 1DGA4:

• $ SET DEVICE/SITE=LKG 1DGA2:

Shadowing Between Sites:
The $SHOW SHADOW Command

• Here's an example of output from the SHOW SHADOW
command:

• $ show shadow dsa100:

• _DSA100: Volume Label: TEST

• Virtual Unit State: Steady State

• No Enhanced Shadowing Features in use

• VU Timeout Value 3600 VU Site Value 0

• Copy/Merge Priority 5000 Mini Merge Disabled

• Served Path Delay 30

• Device 1LDA1 Master Member

• Read Cost 2 Site 0

• Member Timeout 120

• Device 1LDA2

• Read Cost 2 Site 0

• Member Timeout 120

• Device 1LDA3

• Read Cost 2 Site 0

• Member Timeout 120

Shadowing Between Sites
in Multi-Site Clusters

• Because Direct operations are lower in latency
than MSCP-served operations, even when the
inter-site distance is small:

It is generally best to have an inter-site Fibre Channel link
or SAN Extension, if possible.

• And because inter-site latency can be much
greater than intra-site latency, due to the speed
of light:

If the inter-site distance is large, it is best to direct Read
operations to the local disks, not remote disks

− Write operations have to go to all disks in a
shadowset, remote as well as local members

If the inter-site distance is small, performance may be best
if reads are spread across all members at both sites

Shadowing Between Sites

• Directing Shadowing Read operations to local
disks, in favor of remote disks:

− OpenVMS 7.3 allowed you to tell OpenVMS at which
site member disks are located:

• $ SET DEVICE/SITE=x DSAnnn: !on each node

• $ SET DEVICE/SITE=x 1DGAn: !on each device

• SHADOW_SITE SYSGEN parameter added in 7.3-1 (but
never used)

• OpenVMS 7.3-2 added $SET SHADOW and $SHOW
SHADOW commands, so you can now do $ SET
SHADOW/SITE

• SHADOW_SITE_ID SYSGEN parameter added in 7.3-2

− Determines default; eliminates need to do $SET
SHADOW/SITE

− Setting bit 16 (%x10000) in SYSGEN parameter
SHADOW_SYS_DISK was a much-earlier method

Speeding Shadow Copies in Multi-Site
Clusters

• When using the BACKUP/PHYSICAL trick to
speed shadow copies:

− For even more speed-up, perform the
BACKUP/PHYSICAL operation on a node on the target
side

• Because remote (MSCP-served or Fibre Channel) writes take a
minimum of 2 round trips, whereas remote reads take a
minimum of only 1 round trip

Speeding Shadow Copies in Multi-Site
Clusters

• Doing shadow copy work from a node at target
site, not source site, is also most efficient, for the
same reason. It also uses less inter-site
bandwidth.

− MSCP-served copies send data in only one direction
cross the inter-site link, regardless of where the shadow
copy threads run. This uses only ½ of a full-duplex link.

− If inter-site bandwidth is limited, and a Fibre Channel
connection or SAN Extension is in place between sites,
it may be helpful for some fraction of shadow copy
threads to run in the opposite direction, to also utilize
the inter-site link bandwidth in the reverse direction

Speeding Shadow Copies in Multi-Site
Clusters

• To control which node does shadow copy:

− 1) Set dynamic SYSGEN parameter
SHADOW_MAX_COPY to a large positive value on
target-site node(s)

− 2) Set SHADOW_MAX_COPY to 0 on all other nodes

− 3) Do $MOUNT to add member to shadowset; wait
briefly

− 4) Reset SHADOW_MAX_COPY parameter to original
values on all nodes

• As of OpenVMS 8.3, priority for copy & merge
operations may be set with new command:

• $ SET SHADOW /PRIORITY=p DSAn:

Speeding Shadow Copies in Multi-Site
Clusters

• Determining which node is performing a shadow
copy:

− $SHOW SHADOW /ACTIVE
$ show shadow/active

Device Volume Device

Name Label Status

_DSA2: COMMON Copy Active (13%) on NODE1

− Using SDA:
• From each cluster node, do:

1. SDA> SET PROCESS SHADOW_SERVER

2. SDA> SHOW PROCESS/CHANNELS

3. and look for Busy channel to disk of interest
• Or look for node holding a lock in Exclusive mode on a

resource name of the form $DSAnnnn$_COPIER

More performance tips

• $SET SHADOW /ENABLE=SPLIT_READ_LBNS device
− Logically divides the shadowset up into equal-sized LBN ranges

and always directs reads to a givenLBN range to the same
member. This aids in read and read-ahead cache efficiency

Questions?

Speaker Contact Info:

• E-mail: Keith.Parris@hp.com or
keithparris@yahoo.com

• Web: http://www2.openvms.org/kparris/

mailto:Keith.Parris@hp.com
mailto:keithparris@yahoo.com
http://www2.openvms.org/kparris/

• $SET SHADOW /ENABLE=SPLIT_READ_LBNS device
– Logically divides the shadowset up into equal-sized LBN ranges and

always directs reads to a givenLBN range to the same member. This
aids in read and read-ahead cache efficiency

